init,llm gateway & import_analyse
This commit is contained in:
66
app/providers/openai.py
Normal file
66
app/providers/openai.py
Normal file
@ -0,0 +1,66 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import httpx
|
||||
|
||||
from app.exceptions import ProviderAPICallError
|
||||
from app.models import LLMChoice, LLMMessage, LLMProvider, LLMRequest, LLMResponse
|
||||
from app.providers.base import LLMProviderClient
|
||||
|
||||
|
||||
class OpenAIProvider(LLMProviderClient):
|
||||
name = LLMProvider.OPENAI.value
|
||||
api_key_env = "OPENAI_API_KEY"
|
||||
supports_stream = True
|
||||
base_url = "https://api.openai.com/v1/chat/completions"
|
||||
|
||||
async def chat(
|
||||
self, request: LLMRequest, client: httpx.AsyncClient
|
||||
) -> LLMResponse:
|
||||
self.ensure_stream_supported(request.stream)
|
||||
|
||||
payload = self.merge_payload(
|
||||
{
|
||||
"model": request.model,
|
||||
"messages": [msg.model_dump() for msg in request.messages],
|
||||
"temperature": request.temperature,
|
||||
"top_p": request.top_p,
|
||||
"max_tokens": request.max_tokens,
|
||||
"stream": request.stream,
|
||||
},
|
||||
request.extra_params,
|
||||
)
|
||||
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
try:
|
||||
response = await client.post(self.base_url, json=payload, headers=headers)
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPError as exc:
|
||||
raise ProviderAPICallError(f"OpenAI request failed: {exc}") from exc
|
||||
|
||||
data: Dict[str, Any] = response.json()
|
||||
choices = self._build_choices(data.get("choices", []))
|
||||
|
||||
return LLMResponse(
|
||||
provider=LLMProvider.OPENAI,
|
||||
model=data.get("model", request.model),
|
||||
choices=choices,
|
||||
raw=data,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _build_choices(choices: List[dict[str, Any]]) -> List[LLMChoice]:
|
||||
built: List[LLMChoice] = []
|
||||
for choice in choices:
|
||||
message_data = choice.get("message") or {}
|
||||
message = LLMMessage(
|
||||
role=message_data.get("role", "assistant"), # fallback to assistant
|
||||
content=message_data.get("content", ""),
|
||||
)
|
||||
built.append(LLMChoice(index=choice.get("index", len(built)), message=message))
|
||||
return built
|
||||
Reference in New Issue
Block a user